Berikutini adalah soal dan pembahasannya: 1. Tentukan persamaan linear satu variabel atau bukan. (a) 4x + 6y = y - 2x. (b) 9 - 3 (a + 1) = 2a + 5. (c) (x - 4) : 3 + (3 - 6x) : 2 = 4x. (d) (3 - 2x) 2 = 4 - x.
MataPelajaran : Matematika Wajib Kelas/Semester : X/ Ganjil Tahun Pelajaran : 2017 / 2018 Materi Pokok : Persamaan dan Pertidaksamaan Linear Satu Variabel yang Memuat Nilai Mutlak Alokasi Waktu : 2 Minggu x 4Jam pelajaran @ 45Menit A. Kompetensi Inti KI-1 dan KI-2:Menghayati dan mengamalkan ajaran agama yang dianutnya.
EditorRigel Raimarda. Pertidaksamaan nilai mutlak linear satu variabel merupakan suatu pertidaksamaan nilai mutlak yang hanya menggunakan satu variabel (biasanya variabel x). Penyelesaian pertidaksamaan nilai mutlak linear satu variabel memiliki sifat yang berbeda-beda, salah satunya tergantung dari tanda pertidaksamaannya.
Tema: Sistem Persamaan Linear Dua Variabel (SPLDV) Sub Tema : Menentukan Himpunan Penyelesaian Pembelajaran ke : 2 Alokasi Waktu :1 Pertemuan 2 @40 Menit Kompetensi Dasar Pengetahuan Kompetensi Dasar Ketrampilan 3.5 Menjelaskan system persamaan linear dua variabel dan penyelesaiannya yang dihubungkan dengan masalah
Persamaanlinear satu variabel adalah kalimat terbuka yang dihubungkan tanda sama dengan (=) dan hanya mempunyai satu variabel berpangkat 1. Bentuk umum persamaan linier satu variabel adalah ax + b = 0. Contohnya : x + 3 = 7; 3a + 4 = 1; r 2 - 6 = 10; Untuk memahami persamaan linear satu variabel, terdapat elemen-elemen yang perlu kita pahami yaitu tentang pernyataan, kalimat terbuka, variabel, dan konstanta.
Nilaix diganti dengan 10 supaya kedua persamaan setara sehingga; 2(10) - 8 = 12 . 12 = 12. jadi penyelesaian dari persamaan 2x - 8 = 12 yaitu x = 10. 3). Tentukanlah nilai x + 8 =14. penyelesaiannya; x + 8 = 14. x = 14 - 8 (syarat 1) x = 6. jadi, penyelesaiannya yaitu x = 6. Penyelesaian Soal PLSV. Untuk Menyelesaikan soal Persamaan Linear Satu Variabel (PLSV) dapat dilakukan dengan menggunakan metode substitusi.
hVZ0cG. Persamaan Linear Satu Variabel Persamaan linear satu variabel adalah persamaan yang terdiri dari satu variabel dan pangkat terbesar dari variabel itu adalah satu 1. Contoh ~ x + 8 = 34 ~ 5 - 6y = 7 Kedua kalimat atau contoh tersebut disebut dengan persamaan. Persamaan adalah kalimat terbuka yang menyatakan hubungan samadengan =. Contoh Soal Persamaan dan Pembahasannya Tentukan persamaan dari 4y - 2 = 6 Jawab 4y - 2 = 6 4y = 6+2 4y = 8 y = 2 Tentukan persamaan dari 3x + 8 = x + 14 Jawab 3x + 8 = x + 14 3x - x = -8 + 14 2x = 6 x = 6/2 x = 3 Pertidaksamaan Linear Satu Variabel Apa itu pertidaksamaan linear satu variabel, ialah pertidaksamaan yang memuat satu variabel dan pangkat yang paling besar adalah satu. Pertidaksamaan linear satu variabel biasanya menggunakan tanda , β€, dan β₯ Contoh Tentukan penyelesaian dari pertidaksamaan 5z - 2 > 18 Jawab 5z - 2 > 18 5z > 18+2 5z > 20 z > 5 Sistem persamaan linear satu variabel memiliki tiga metode penyelesaian, yakni substitusi, persamaan ekuivalen dan pindah ruas. Ketiga cara itu juga dapat kita gunakan dalam pertidaksamaan linear satu variabel. Masih ingatkan, bahwa pertidaksamaan linear satu variabel ditandai dengan tanda , β€, dan β₯. Hal ini berlaku dimana saja, asalkan itu adalah suatu pertidaksamaan. Berikut selengkapnya berdasarkan metode! Pertidaksamaan Linear Satu Variabel dengan cara Substitusi Untuk menentukan himpunan penyelesaian pertidaksamaan linear satu variabel dengan cara substitusi hampir sama dengan menentukan himpunan penyelesaian persamaan linear satu variabel. Contoh Soal Pertidaksamaan Linier 1 Variabel Tentukan himpunan penyelesaian dari pertidaksamaan 15 - 2x > 10, jika x adalah variabel himpunan bilangan asli. Jawab Jika x = 1 Jika x = 2 Jika x = 3 Jadi HP 1,2} 15 - 2x > 10 15 - 2x > 10 15 - 2x > 10 15 - 21 > 10 15 - 22 > 10 15 - 23 > 10 15 - 2 > 10 15 - 4 > 10 15 - 6 > 10 13 > 10 BENAR 11 > 10 BENAR 9 > 10 SALAH Penyelesaian Pertidaksamaan Linear Satu Variabel dengan cara Pindah Ruas Teknik pindah ruas termasuk teknik paling mudah ketimbang substitusi ataupun ekuivalen. Contoh Soal Pertidaksamaan Linier Tentukan himpunan penyelesaian dari petidaksamaan 4x + 15 < x + 45 ! Jawab4x + 15 < x + 45 4x - x < 45 - 15 3x < 30 3x < 30/3 x < 10 Jadi HP {10} Demikianlah pembahsan tentang Contoh Soal dan Penyelesaian Pertidaksamaan Linear Satu Variabel semoga dapat membantu anda dalam memahami materi tersebut.
ο»ΏSoal persamaan linear satu variabel merupakan salah satu bentuk soal yang paling sering ditemukan dalam pelajaran matematika kelas 10 SMA. Soal ini bertujuan untuk membantu siswa memahami konsep persamaan linear satu variabel dengan lebih baik. Dalam soal ini, siswa diminta untuk menyelesaikan persamaan linear satu variabel dengan menggunakan teknik-teknik yang telah dipelajari. Persamaan linear satu variabel adalah persamaan yang hanya mengandung satu variabel, yaitu x. Biasanya, persamaan ini dapat ditulis dalam bentuk ax + b = 0, di mana a dan b adalah bilangan real. Soal-soal ini seringkali mengajarkan tentang cara menyelesaikan persamaan linear satu variabel dan cara menggunakan persamaan ini untuk menyelesaikan masalah matematika. Konsep Dasar Persamaan Linear Satu Variabel Untuk memahami soal persamaan linear satu variabel, siswa harus memahami konsep dasar persamaan linear satu variabel terlebih dahulu. Konsep dasarnya adalah bahwa persamaan linear satu variabel adalah persamaan yang hanya mengandung satu variabel, yaitu x. Seringkali, persamaan ini ditulis dalam bentuk ax + b = 0, di mana a dan b adalah bilangan real. Untuk menyelesaikan persamaan ini, siswa harus memecahkan persamaan linear satu variabel tersebut menjadi dua bagian. Bagian pertama adalah ax = -b, di mana a dan b adalah bilangan real. Bagian kedua adalah x = -b/a, di mana a dan b adalah bilangan real. Cara Menyelesaikan Soal Persamaan Linear Satu Variabel Untuk menyelesaikan soal persamaan linear satu variabel, siswa harus dapat menggunakan teknik-teknik yang sudah dipelajari. Pertama, siswa harus memecahkan persamaan linear satu variabel menjadi dua bagian. Bagian pertama adalah ax = -b, di mana a dan b adalah bilangan real. Bagian kedua adalah x = -b/a, di mana a dan b adalah bilangan real. Setelah itu, siswa dapat menggunakan teknik-teknik seperti pengelompokan, faktorisasi, dan penyederhanaan untuk menyelesaikan soal. Soal persamaan linear satu variabel kelas 10 biasanya ditanyakan dalam bentuk yang berbeda. Namun, umumnya soal-soal ini membutuhkan siswa untuk menyelesaikan persamaan linear satu variabel dengan menggunakan teknik yang telah dipelajari. Beberapa soal yang mungkin ditanyakan pada kelas 10 adalah sebagai berikut Selesaikan persamaan linear satu variabel 3x + 7 = 10. Selesaikan persamaan linear satu variabel 5x β 4 = 16. Selesaikan persamaan linear satu variabel 7x + 5 = 22. Selesaikan persamaan linear satu variabel 8x β 9 = 15. Untuk menyelesaikan soal-soal di atas, siswa harus dapat menggunakan teknik-teknik seperti pengelompokan, faktorisasi, dan penyederhanaan. Dengan menggunakan teknik-teknik tersebut, siswa dapat dengan mudah menyelesaikan soal-soal tersebut. Contoh Soal Persamaan Linear Satu Variabel Berikut ini adalah contoh soal persamaan linear satu variabel kelas 10 Selesaikan persamaan linear satu variabel x + 9 = 15. Selesaikan persamaan linear satu variabel 3x β 7 = 16. Selesaikan persamaan linear satu variabel 2x + 5 = 11. Selesaikan persamaan linear satu variabel 10x β 13 = 17. Untuk menyelesaikan soal-soal di atas, siswa harus dapat menggunakan teknik-teknik seperti pengelompokan, faktorisasi, dan penyederhanaan. Dengan menggunakan teknik-teknik tersebut, siswa dapat dengan mudah menyelesaikan soal-soal tersebut. Kesimpulan Soal persamaan linear satu variabel kelas 10 adalah soal yang bertujuan untuk membantu siswa memahami konsep persamaan linear satu variabel dengan lebih baik. Soal-soal yang ditanyakan biasanya membutuhkan siswa untuk menyelesaikan persamaan linear satu variabel dengan menggunakan teknik-teknik yang telah dipelajari. Dengan memahami konsep dasar persamaan linear satu variabel dan cara menyelesaikannya, siswa dapat dengan mudah menyelesaikan soal-soal tersebut.
Hai sobat, bagaimana kabarmu hari ini? semoga sehat selalu dan tetap semangat belajar ya! Oh ya, pada kesempatan kali ini kita akan belajar materi yang menarik loh, yaitu βMengenal konsep dasar dan rumus umum pada Persamaan Linear Satu Variabel PLSVβ. Perlu sobat ketahui bahwa Konsep PLSV banyak diterapkan pada soal-soal aplikasi matematika di kehidupan sehari-hari, disamping itu konsep ini juga digunakan sebagai syarat untuk memahami konsep persamaan linear satu variabel, persamaan linear dua variabel , persamaan linear tiga variabel, dan pertidaksamaan nilai mutlak. Sehingga konsep ini perlu sobat kuasai dengan baik. Yuk kita simak .. Persamaan Linear Satu Variabel PLSV yaitu sebuah kalimat terbuka yang dihubungkan menggunakan tanda β = β dan hanya mempunyai variabel berpangkat 1. Bentuk umum dari PLSV yakni ax + b = 0. Contonya; x + 5 = 83a + 2 = 11y β 4 = 6 Untuk mempermudah dalam memahami Persamaan linear satu variabel maka kita perlu mengenal terlebih dahulu elemen-elemennya seperti kalimat terbuka , variabel, konstanta dan himpunan penyelesaian . Kalimat terbuka yaitu suatu kalimat yang belum bisa dipastikan kebenarannya, Variabel atau peubah yaitu lambang simbol pada kalimat terbuka yang bisa diganti dengan sembarang anggota himpunan yang telah ditentukan, konstanta yaitu lambang yang menyatakan suatu bilangan tertentu, adapun himpunan penyelesaian yaitu himpunan pengganti dari semua variabel-variabel kalimat terbuka sehingga menjadikan kalimat tersebut menjadi benar. Contohnya; x + 4 = 911 β y = 89z β 3 = 15 Pada bagian 1. x + 4 = 9 disebut kalimat terbuka, nilai x disebut variabel, sedangkan 4 dan 9 disebut dengan konstanta. Himpunan penyelesaiannya adalah x = 5 Pada bagian 2. 11 β y = 8 disebut dengan kalimat terbuka, nilai y disebut dengan variabel, sedangkan 11 dan 8 disebut dengan konstanta. Himpunan penyelesaiannya adalah y = 3 Pada bagian 3. 9z β 3 = 15 disebut dengan kalimat terbuka, nilai z disebut dengan variabel, sedangkan β 3 dan 15 disebut dengan konstanta. Himpunan penyelesaiannya adalah z = 2. Kesetaraan Bentuk Pada PLSV Dua persamaan ataupun lebih dapat dikatakan setara atau equivalen apabila mempunyai himpunan penyelesaian yang sama, dan dinotasikan menggunakan simbol β β β. Syarat suatu persamaan agar dapat dinyatakan sebagai persamaan yang setara yakni; Menambahkan atau mengurangi dikedua ruas menggunakan bilangan yang sama,Mengalikan atau membagi dikedua ruas menggunakan bilangan yang sama Contoh Soalnya; 1. Tentukanlah nilai x β 4 = 3 penyelesaiannya; Apabila nilai x diganti dengan 7 maka nilai dari 7 β 4 = 3 {benar} sesuai dengan syarat 1 jadi penyelesaian dari persamaan x β 4 = 3 adalah x = 7 2. Tentukanlah nilai 2x β 8 = 12 penyelesaiannya; 2x β 8 = 12 2x = 12 + 8 syarat 1 2x = 20 x = 20/2 x = 10 Nilai x diganti dengan 10 supaya kedua persamaan setara sehingga; 210 β 8 = 12 12 = 12 jadi penyelesaian dari persamaan 2x β 8 = 12 yaitu x = 10 3. Tentukanlah nilai x + 8 =14 penyelesaiannya; x + 8 = 14 x = 14 β 8 syarat 1 x = 6 jadi, penyelesaiannya yaitu x = 6 Penyelesaian Soal PLSV Untuk Menyelesaikan soal Persamaan Linear Satu Variabel PLSV dapat dilakukan dengan menggunakan metode substitusi. Metode substitusi yaitu menggantikan variabel menggunakan bilangan yang sesuai, sehingga persamaan tersebut menjadi kalimat yang bernilai benar. Contoh Soal; Tentukanlah himpunan penyelesaian pada persamaan y + 6 = 10, jika nilai variabel y merupakan bilangan asli. Pembahasannya; Kita gantikan variabel y dengan nilai y = 4 di substitusikan, tenyata persamaan y + 6 = 10 menjadi kalimat terbuka yang bernilai benar. Jadi Himpunan penyelesaian dari persamaan y + 6 = 10 yaitu {4} Adapun langkah β langakah dari metode substitusi diantaranya; Mengelompokkan suku yang sejenis,Apabila dijumpai suku sejenis pada ruas yang berbeda, maka dipindahkan supaya menjadi satu ruas,Apabila dipindahkan ruasnya, maka tanda + positif berubah menjadi β negatif dan berlaku juga variabel hingga = konstanta yang menjadi penyelesaiannya. Contoh Soal; Tentukanlah Himpunan penyelesaian dari persamaan 7x β 6 = 6x + 4 7x β 6 = 6x + 4 7x β 6 + 6 = 6x + 6 + 4 kedua ruas ditambah 6 7X = 6x + 10 7x β 6x = 10 kelompokkan suku sejenis x =10 Jadi, Himpunan penyelesaiannya yaitu x = 10 Model Matematika PLSV Pengaplikasian PLSV bisa dengan mudah ditemukan dikehidupan sehari -hari, misalnya untuk menentukan bilangan yang belum diketahui, menghitung luas dan keliling tanah, menentukan hasil suatu panen, menghitung harga jual suatu kendaraan, menentukan jumlah paket pada jasa pengiriman, dan lain sebagainya. Untuk menyelesaikan Soal PLSV umumnya diselesaikan dengan membuat sebuah model matematika. Penggunaan model matematika ini contohnya memisalkan suatu informasi yang belum diketahui dengan sebuah varabel tertentu. Berikut ini merupakan contoh Soal Aplikasi PLSV 1. Diketahui dua buah bilangan mempunyai selisih 7, dan jika dijumlahkan sebanyak 31. Tentukanlah model matematika, dan tentukan kedua bilangan tersebut! Pembahasan; Model matematikanya yakni; Bilangan I = x Bilangan II = x + 7 Penyelesaian dari model matematika diatas yakni; x + x + 7= 31 2x + 7 = 31 2x = 31 β 7 2x = 24 x = 24/2 x = 12 jadi, Bilangan I = 12 , dan Bilangan II = 12 + 7 = 19 2. Seorang petani memiliki tanah yang bentuknya persegi panjang, adapun lebarnya adalah 6 m lebih pendek dari panjangnya, Jika diketahui kelilingnya adalah 60 m, Tentukanlah model matematika dan luas tanah petani tersebut! Pembahasan; Jika panjang tanah dimisalkan dengan x, sedangkan lebarnya adalah x β 6, maka model matematikanya yaitu; P = x, L = x β 6 Penyelesaian dari model matematika diatas yakni; K = 2 p + l 60 = 2 x + x β 6 60 = 2 2x -6 60 = 4x β 12 60 + 12 = 4x 72 = 4x 72/4 = x x = 18 Jadi, luas tanah petani tersebut yaitu; L = p x l L = x x β 6 L = 18 18 β 6 L = 18 x 12 L = 216 cm2 Contoh Soal PLSV dan Pembahasannya Setelah mengenal konsep dan metode Penyelesaian pada sistem persamaan linear satu variabel PLSV, Rasanya kurang lengkap jika belum berlatih soal-soal yang berkaitan dengan PLSV. Untuk itu simaklah contoh soal berikut, supaya pemahaman sobat semakin bertambah. Yuk simakβ¦ 1. Contoh Soal Kesetaraan PLSV Penyelesaiannya; Dengan menyelesaikan langkah-langkah penyelesaian persamaan linear satu variabel, maka diperoleh; 2. Contoh Soal Aplikasi PLSV untuk menentukan jumlah hasil panen Sebuah perkebunan jeruk menghasilkan jumlah panen pada bulan ke t atau Bt sebanyak 80t + 75kg. Apabila didapati hasil panen dengan jumlah 1,275 ton, pada bulan berapakah jumlah 1,275 ton terjadi? Penyelesaiannya; Diketahui; B t = 80t + 75kg B t = 1,275 ton atau 1275 kg karena B t = 80t + 75kg, dan B t = 1275 kg , maka; Jadi, jumlah panen kebun jeruk tersebut sebanyak 1,275 ton akan terjadi pada bulan ke 15. Bagaimana sobat, sudah mulai paham mengenai persamaan linear satu variabel? untuk lebih menguasainya materi PLSV, jangan lupa untuk terus berlatih yaβ¦ Demikian sedikit materi yang dapat kami bagikan, semoga bermanfaat bagi sobat sekalian, dan sampai berjumpa kembali pada kesempatan yang lain.. π π π
Persamaan linear satu variabel adalah kalimat terbuka yang dihubungkan dengan tanda sama dengan = dan hanya memiliki satu variabel berpangkat satu. Pertidaksamaan linear satu variabel adalah kalimat terbuka yang dinyatakan dengan menggunakan tanda/lambang ketidaksamaan/ pertidaksamaan dengan satu variable peubah berpangkat satu. Berikut ini 10 soal dan jawaban ulangan harian tentang persamaan dan pertidaksamaan linear satu variabel. Soal 1 Perhatikan kalimat-kalimat berikut. 1 12 β 2 x 5 = 2 2 3 x 7 = 4 x 2 + 13 3 5 x 6 β 3 x 7 = 4 x 3 4 15 β 3 x 4 72 Sisi pertama + sisi kedua + sisi ketiga > 72 3a + 4a + 5a > 72 12a > 72 a > 6 Karena a>6 maka Sisi pertama = 3a = 3 x 6 = 18 Sisi kedua = 4a = 4 x 6 = 24 Sisi ketiga = 5a = 5 x 6 = 30 Soal 10 Sebuah truk tanpa beban beratnya 3720 kg. Truk tersebut akan mengangkut kotak-kotak yang berisi peralatan mesin. Berat setiap kotak 250 kg. Truk tersebut berpenumpang 2 orang yang jumlah berat badannya 150 kg. Jika jumlah berat beban truk tidak boleh lebih dari 7500 kg, maksimum kotak yang dapat diangkut β¦ a. 13 buah b. 14 buah c. 15 buah d. 16 buah Jawaban b Penyelesaian Berat truk tanpa beban = 3720 Berat 1 kotak peralatan mesin = 250 Berat beberapa kotak peralatan mesin = 250 x Berat badan 2 orang penumpang = 150 Jumlah berat badan truk β€ 7500 3720 + 250x + 150 β€ 7500 3870 + 250x β€ 7500 250x β€ 7500-3870 250x β€ 3630 x β€ 14,52 x β€ 14
- Pertidaksamaan nilai mutlak linear satu variabel merupakan suatu pertidaksamaan nilai mutlak yang hanya menggunakan satu variabel biasanya variabel x. Penyelesaian pertidaksamaan nilai mutlak linear satu variabel memiliki sifat yang berbeda-beda, salah satunya tergantung dari tanda pertidaksamaan nilai mutlak linear satu variabel Berikut ini terdapat tiga soal yang secara umum menggambarkan persoalan pertidaksamaan nilai mutlak linear satu variabel. Contoh soal 1 Tentukan penyelesaian dari pertidaksamaan 4x+3<9! Jawaban4x+3<9-9<4x+3<9-9-3<4x+3-3<9-3-12<4x<6-12/4<4x/4<6/4-3 soal persamaan linear satu variabel kelas 10